

CONTENT

I. Introduction

Visual Basic 6 to .NET Migrations:
Understanding Performance

April 2023

Visual Basic to .NET Migrations: Understanding Performance

2

Visual Basic 6 to .NET Migrations:
Understanding Performance

Migrating a Windows desktop application written in Visual Basic 6 (VB6) to C# in
.NET carries significant advantages, including enhanced efficiency, improved
maintainability, and longevity in the face of evolving technology landscapes. While
Mobilize.Net aims to create a more robust and future-proof application with .NET,
the performance of the new application depends on many factors: differences in
programming languages, architectural modifications, and unforeseen obstacles
that may impact performance arising from the hidden aspects of third-party
components and Microsoft frameworks and operating systems.

Mobilize.Net makes no warranty that a migrated application will perform identically
to the original VB6 application. This whitepaper outlines some of the differences
between VB6 and C#/.NET that might affect application performance. While some
issues are inherent in the new language and runtime framework, many
performance issues can be mitigated with careful profiling and tuning.

Visual Basic to .NET Migrations: Understanding Performance

3

1. Inherent Differences in Programming Languages

Migrating from VB6 to C# involves considering various factors that can impact
performance. Although Mobilize.Net’s migration methodology offers the best
like-for-like transformation approach available, the paradigm shift from
procedural (VB6) to object-oriented (C#) can lead to variations in algorithm
implementation and execution speed. Differences in typing, error handling,
string manipulation, default data types, late binding, variable declaration, and
event handling between VB6 and C# can also introduce performance
variations. Careful consideration and potential code refactoring may be
necessary to optimize performance during the migration process.

• Paradigm Changes: VB6 and C# are based on distinct paradigms

with different design principles. VB6 is more procedural, while C#
follows an object-oriented approach. This fundamental difference can
cause variations in how algorithms are implemented, thereby
impacting the execution speed.

• Typing: In VB6, the 'Variant' data type can hold any type of data and
is dynamically typed. In contrast, C# is strongly typed, which provides
robustness but might cause slowdowns when handling equivalent
'Variant' operations.

• Error Handling: In terms of error handling, VB6 uses the 'On Error'
statement to handle runtime errors, while C# utilizes structured
exception handling, which might increase the overhead in certain
scenarios.

• String Handling: VB6 strings are mutable and use BSTR data type
that provides various built-in operations. In contrast, C# uses
System.String, which is immutable. Manipulating large strings can
potentially be slower in C# due to the need to create new string
instances with each modification.

Visual Basic to .NET Migrations: Understanding Performance

4

• Default Data Types: VB6 uses different default data types than C#.
For example, the default numeric type in VB6 is 'Double', whereas it is
'int' in C#. Any assumptions made in VB6 code based on these
defaults could lead to performance issues when translated into C#.

• Late Binding: VB6 supports late binding, which allows objects to be
dynamically typed and bound at runtime. While C# also supports late
binding, it is not typically used due to performance overhead. Code
utilizing VB6 late binding would need to be refactored for early binding
in C#, which could lead to performance changes.

• Variable Declaration: In VB6, variables that are not explicitly
declared with a Dim statement are variants of type 'Empty'. On the
other hand, C# requires all variables to be explicitly declared before
they are used. This can lead to performance differences as variant
types in VB6 have more overhead due to their ability to hold any type
of data.

• Event Handling: VB6 uses a simple event handling model, with
events defined within objects. C#, in contrast, uses a more
sophisticated event model with delegates and event handlers. This
could potentially result in performance differences, particularly in
applications with many events.

Visual Basic to .NET Migrations: Understanding Performance

5

2. Optimization Complexities

VB6 code, especially those that have been in use for a while, may have been
fine-tuned for performance based on the characteristics and runtime
behavior unique to VB6. These performance enhancements could rely on
specific language constructs or libraries that may not have direct equivalents
in C#, making it challenging to achieve similar performance in the new
environment. Creating new optimizations in C# to match those in VB6 can
be a complex, time-consuming task.

• Loop Structures and Iteration Mechanisms: VB6 and C# handle
loop structures and iterations differently. VB6 uses traditional 'For' and
'While' loops, whereas C# offers more sophisticated structures like
'foreach', 'LINQ', etc. The loop structure used in VB6 might have been
optimized for performance with specific code patterns, which may not
translate effectively to C#. Re-optimizing such code in C# to match
VB6's performance could be a complex and resource-intensive task.

• Array and Collection Handling: C# uses zero-based indexing for
arrays, while VB6 supports both zero-based and one-based indexing.
Additionally, C# offers more complex data structures like Lists,
Dictionaries, and Hashtables. Data manipulation code that has been
finely tuned in VB6 might perform differently when translated into C#
due to these differences, requiring additional optimization effort.

Visual Basic to .NET Migrations: Understanding Performance

6

• Multithreading and Asynchrony: The multithreading capabilities in
VB6 are significantly limited compared to C#, which offers powerful
tools for multithreaded and asynchronous programming. While this is
generally a benefit, it could lead to complexities during migration. VB6
code might use certain 'hacks' or workarounds to achieve
multithreading, which won't translate well to C#. Additionally, simply
rewriting single-threaded VB6 code into multithreaded C# without
careful design and optimization could reduce performance due to
thread management overhead.

• Graphics and UI Rendering: VB6 and C# utilize completely different
models for graphics and UI rendering. VB6 uses a simple, immediate-
mode rendering system, while C# (through .NET) uses a more
complex, retained-mode system. This difference can have a major
impact on the performance of any graphics-intensive code. Optimizing
graphics code for the new system can be very complex and requires
in-depth knowledge of both the old and the new rendering systems.

Visual Basic to .NET Migrations: Understanding Performance

7

3. Differences in Architecture

Visual Basic 6 (VB6) and .NET differ in several key aspects. VB6 relies on the
Component Object Model (COM) for component handling, while .NET uses a
managed and type-safe runtime environment. Memory management, code
execution, data access, and UI architecture also vary between the two
frameworks, potentially impacting performance during the transition. Careful
consideration is necessary when migrating from VB6 to .NET to address
these differences and optimize performance.

• Component Changes: VB6 uses a different approach to handling

components, based on Component Object Model (COM), while .NET
employs a managed and type-safe runtime environment. This change
in component handling can impact performance.

• Memory Management: Differences in memory management and
garbage collection methods between VB6 and .NET may lead to
temporary performance dips, particularly during the early transition
stages.

• Managed vs Unmanaged Code: VB6 operates largely on unmanaged
code, directly interfacing with the system's hardware resources. In
contrast, .NET applications run managed code, where system
resources are handled by the .NET runtime, increasing safety and
maintainability but possibly affecting the performance of low-level
operations that were optimized for unmanaged execution in VB6.

• Data Access: VB6 uses technologies like DAO (Data Access Objects)
and RDO (Remote Data Objects) in addition to ADO (ActiveX Data
Objects) for data access. These technologies directly communicate
with databases, providing efficient data operations. In contrast, .NET
uses ADO.NET, Entity Framework, and other ORM-based data access
technologies, which, while offering enhanced flexibility and
maintainability, can introduce additional layers of abstraction, possibly
impacting performance during data-intensive operations.

Visual Basic to .NET Migrations: Understanding Performance

8

• UI Architecture: The UI architecture in VB6 is drastically different
from that in .NET. VB6 uses a single-threaded apartment (STA) model
where UI components are accessed through a single UI thread. On the
other hand, .NET supports a multi-threaded apartment (MTA) model,
enabling different threads to access UI components. However, this
transition requires careful handling of UI updates and can create
performance bottlenecks if not handled efficiently.

• Component-Based Architecture: VB6 extensively uses COM
components for extending its functionality. The COM model provides
direct, efficient inter-process communication, which can be optimized
for performance. On the other hand, .NET uses assemblies, which
while offering better versioning and deployment, may not
communicate as efficiently as COM components, especially if they need
to interact with legacy COM components through COM Interop.

Visual Basic to .NET Migrations: Understanding Performance

9

4. Impact of Uncontrollable Factors

Migrating from VB6 to .NET involves potential challenges and performance
considerations. Unpredictable issues may arise due to reliance on Windows
API calls, requiring additional code layers in .NET. Deprecated components
and the lack of direct equivalents in .NET may introduce performance
overhead, especially when finding replacements or developing workarounds.
Compatibility issues with ActiveX controls used in VB6 applications could also
impact performance. Additionally, differences in how VB6 and .NET interact
with databases may affect performance during the migration process.

• Windows API Calls: Unpredictable issues can arise during the

migration process. For example, VB6 functions might rely on Windows
API calls that may not be directly supported in .NET, requiring
additional layers of code that could affect performance.

• Deprecated Components: Deprecated VB6 components, or those
from third-party vendors, may not have direct .NET equivalents.
Finding replacements or developing workarounds could introduce
performance overhead.

• ActiveX Controls: VB6 applications might use ActiveX controls which
may not be supported in .NET, thus demanding complex replacements.

• Database Access: The modernized application will need to work with
the existing database. However, differences in how VB6 and .NET
interact with databases could impact performance.

Visual Basic to .NET Migrations: Understanding Performance

10

In Summary

The objective of Mobilize.Net migration projects is to enhance the overall
application performance, functionality, and maintainability. However, due to the
multifaceted nature of such projects, it is impossible to guarantee identical or
superior speed for all processes, despite our efforts to improve performance during
the migration.

GAP Mobilize is committed to a rigorous process of testing, optimization, and
iterative enhancements to ensure that the modernized application meets the
necessary functional and performance requirements. Furthermore, GAP Mobilize
has engineering and QA resources trained in C# and .NET to provide support to
your team for optimizing and enhancing your migrated application.

This commitment is essential because the migration process involves addressing
the complex and sometimes unpredictable nature of the internals of third-party
components and Microsoft frameworks and operating systems, as well as the
intrinsic differences between VB6 and C#. Our fine-tuned methodology developed
over more than two decades helps us ensure that the upgraded application meets
the necessary functional and performance expectations.

Visual Basic to .NET Migrations: Understanding Performance

11

References:

1. Microsoft Docs, "Accessing Data in Visual Basic Applications".

https://learn.microsoft.com/en-us/previous-versions/visualstudio/visual-basic-
6/aa716176(v=vs.60)

2. Microsoft Docs, "Choosing Communication Options in .NET".

https://docs.microsoft.com/en-us/dotnet/architecture/microservices/architect-
microservice-container-applications/communication-in-microservice-architecture

3. Microsoft Docs, "Data Type Summary (Visual Basic)".

https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/data-
types/data-type-summary

4. Microsoft Docs, "Early vs. Late Binding".

https://learn.microsoft.com/en-us/dotnet/visual-basic/programming-
guide/language-features/early-late-binding/

5. Microsoft Docs, "Event Statement (Visual Basic)". https://docs.microsoft.com/en-

us/dotnet/visual-basic/language-reference/statements/event-statement

6. Microsoft Docs, "Exception Handling (C# Programming Guide)".

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/exceptions/

7. Microsoft Docs, "Garbage Collection in .NET".

https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/

8. Microsoft Docs, "How to: Migrate ActiveX Controls to .NET".

https://learn.microsoft.com/en-
us/dotnet/desktop/winforms/controls/considerations-when-hosting-an-activex-
control-on-a-windows-form?view=netframeworkdesktop-4.8

9. Microsoft Docs, "On Error Statement (Visual Basic)".

https://docs.microsoft.com/en-us/dotnet/visual-basic/language-
reference/statements/on-error-statement

10. Microsoft Docs, "Platform Invocation Services". https://docs.microsoft.com/en-

us/dotnet/standard/native-interop/

11. Microsoft Docs, "String Class (System)".

https://docs.microsoft.com/en-us/dotnet/api/system.string

https://learn.microsoft.com/en-us/previous-versions/visualstudio/visual-basic-6/aa716176(v=vs.60)
https://learn.microsoft.com/en-us/previous-versions/visualstudio/visual-basic-6/aa716176(v=vs.60)
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/communication-in-microservice-architecture
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/communication-in-microservice-architecture
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/data-types/data-type-summary
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/data-types/data-type-summary
https://learn.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/early-late-binding/
https://learn.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/early-late-binding/
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/statements/event-statement
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/statements/event-statement
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/exceptions/
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/
https://learn.microsoft.com/en-us/dotnet/desktop/winforms/controls/considerations-when-hosting-an-activex-control-on-a-windows-form?view=netframeworkdesktop-4.8
https://learn.microsoft.com/en-us/dotnet/desktop/winforms/controls/considerations-when-hosting-an-activex-control-on-a-windows-form?view=netframeworkdesktop-4.8
https://learn.microsoft.com/en-us/dotnet/desktop/winforms/controls/considerations-when-hosting-an-activex-control-on-a-windows-form?view=netframeworkdesktop-4.8
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/statements/on-error-statement
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/statements/on-error-statement
https://docs.microsoft.com/en-us/dotnet/standard/native-interop/
https://docs.microsoft.com/en-us/dotnet/standard/native-interop/
https://docs.microsoft.com/en-us/dotnet/api/system.string

Visual Basic to .NET Migrations: Understanding Performance

12

12. Microsoft Docs, "String Data Type (Visual Basic)". https://docs.microsoft.com/en-

us/dotnet/visual-basic/language-reference/data-types/string-data-type

13. Microsoft Docs, "Variant Data Type (Visual Basic)". https://learn.microsoft.com/en-

us/office/vba/language/reference/user-interface-help/variant-data-type

14. S. Clarke, R. J. Walker, "Composition Patterns of Code Migration".

https://dl.acm.org/doi/10.1145/2568225.2568285

15. The Computer Language Benchmarks Game.

https://benchmarksgame-team.pages.debian.net/benchmarksgame/

Millions of developers have used Mobilize.Net automated migration technology
to successfully modernize billions of lines of code. Acquired by GAP in 2023,
Mobilize helps drive business digital transformation with guidance from GAP’s
specialized services team.

https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/data-types/string-data-type
https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/data-types/string-data-type
https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/variant-data-type
https://learn.microsoft.com/en-us/office/vba/language/reference/user-interface-help/variant-data-type
https://dl.acm.org/doi/10.1145/2568225.2568285
https://benchmarksgame-team.pages.debian.net/benchmarksgame/

Visual Basic to .NET Migrations: Understanding Performance

13

