
Migrating PowerBuilder
DataWindows to Web

Cheyenne Sokkappa | 2025

The DataWindow object is the cornerstone of PowerBuilder application development.
Powerbuilder Apps are largely designed around accessing databases, typically for CRUD
(Create, Read, Update, Delete) operations.

In fact, most business applications—especially legacy client/server applications—
are forms over data: screens contain a host of data-bound controls designed
to build queries against database tables, return results, and allow for CRUD
updates.
For example, a fairly typical screen for this kind of application might look like this
one:
In this screen—from GAP Migration’s demo app (Salmon King Seafood)—we have
some text fields for entering search strings, a grid control that returns the
results of a SQL query built from the text box values, another grid control, some
calculated fields displayed as text boxes, and a couple of command buttons. Very
typical.

PowerBuilder was a tool designed to build these kinds of apps quickly and easily,
using an approach that today is known as "low code." With PowerBuilder, you
created windows (forms) with controls and set properties on those controls.

This, in itself, was no different from VB6. But PowerBuilder took the concept as far
as possible, particularly in the use of DataWindows.

2

http://https//www.mobilize.net/products/app-migrations/webmap-powerbuilder/
http://https//www.mobilize.net/products/app-migrations/webmap-powerbuilder/
https://www.mobilize.net/products/webmap-angular/powerbuilder
http://https//www.mobilize.net/products/app-migrations/webmap-powerbuilder/
http://https//www.mobilize.net/products/app-migrations/webmap-powerbuilder/
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete

3

PowerBuilder DataWindows
A DataWindow is an object unique to PowerBuilder.

The window object is bound to a data source, and the results of the
associated DB query can be displayed in a variety of ways or views.
Here, for example, is a DataWindow running in the PowerBuilder 12.5
tutorial—in this case it's displaying data in a grid view:

And here, in the same app, is a second DataWindow displaying the same query, but in
a forms view:

Selecting a row in the first DataWindow updates the display in the bottom one:

4

Where's the Code?
DataWindows can have controls with properties and events, and of course they can have
code that responds to events. So where's the code? The idea behind PowerBuilder is to
minimize the amount of actual coding the developer has to perform, so as much as possible
the integrated development environment (IDE) allows you to create your application using a
more interactive method.

Views and Reports
In addition to DataWindows presenting the results of DB queries in a variety of formats, they also
integrate some basic printing concepts directly into the application user interface.

Remembering that in the 1990s, when PowerBuilder was at its peak of popularity,
paper was still a ubiquitous aspect of office life. DataWindows can include
headers, footers, page numbers, and formatting designed for almost any kind of
physical printer. In the DataWindow properties panel, a Print Specifications tab
lets you manage all these parameters:

5

Let's look at an example: What are we looking at here? On the left side you can see all
the available events for the w_customers DataWindow. The animation shows how you
can get PowerBuilder to add scaffolding for code structures directly
into the script window (PowerBuilder calls code "scripts"). You can see all
the code behind an object, like this w_customers DataWindow, by right
clicking on the object name and selecting "show source":
If we take a closer look at code—this time from a different, simpler, demo
app—we can see it looks pretty straightforward:
If we take a closer look at code—this time from a different, simpler, demo
app—we can see it looks pretty straightforward:

Some declarations:
global type w_main from window end type type cb_2 from commandbutton
within w_main end type

6

Some declarations:
global type w_main from window
end type
type cb_2 from commandbutton within w_main
end type

Some constructors:
on w_main.create
this.cb_2=create cb_2
this.cb_1=create cb_1
this.dw_2=create dw_2
this.dw_1=create dw_1
this.Control[]={this.cb_2,&
this.cb_1,&
this.dw_2,&
this.dw_1}
end on

Some setters:
global type w_main from window
integer width = 3374
integer height = 1408
boolean titlebar = true
string title = "Untitled"
boolean controlmenu=true
boolean minbox = true
boolean maxbox = true
boolean resizable = true
long backcolor = 67108864
string icon = "AppIcon!"

Some destructors:
on
w_main.destroy
destroy(this.cb_2)
destroy(this.cb_1)
destroy(this.dw_2)
destroy(this.dw_1)
end on

...at least, that's what I think they are.

Migrating DataWindows to C#
Now that we know more about what PowerBuilder DataWindows look like, how would we go
about migrating DataWindows to the web using non-PowerBuilder technologies.

Over the last few years, Mobilize.Net has made significant improvements to
its PowerBuilder migration tools, allowing for modernization/migration from
PowerBuilder to Java or ASP.NET Core.

Both use Angular, HTML, JavaScript, and Kendo for Angular to create a modern,
well-architected web front end and performant back end server. In this case, I'll
show a demo app and how the code is migrated to the web using ASP.NET Core.

First, let's look at our PowerBuilder demo app:

This looks (and basically is) a trivial example, but there are several interesting
things going on in this demo. First, there are two DataWindows, one a free form
style, and the other (lower) a grid presentation.

Each DataWindow has a command button, and the top command button invokes
a message box (modal dialog). How do these get re-created after migrating these
PowerBuilder DataWindows to a C# web app?

7

http://https//www.mobilize.net/products/app-migrations/webmap-powerbuilder/
http://https//www.mobilize.net/products/app-migrations/webmap-powerbuilder/
https://www.mobilize.net/products/webmap-angular/powerbuilder
http://https//www.mobilize.net/products/app-migrations/webmap-powerbuilder/
http://https//www.mobilize.net/products/app-migrations/webmap-powerbuilder/
https://www.mobilize.net/products/webmap-angular/powerbuilder

Let’s now show how WebMAP can migrate PowerBuilder DataWindows to a modern web app.

Let's look at the "System Tree" (sort of a solution explorer):

A convention for PowerBuilder apps is to prefix the names of things with what they
are (see Hungarian notation).
So the parent window is called a w_main and the DataWindows are called dw_grid
and dw_info respectively.
And because this is so familiar to PowerBuilder developers, we want to keep this
naming convention in the C# code after we migrate it, even though Hungarian
notation is out of favor today.

8

Creating a Modern Web App with
WebMAP

https://www.mobilize.net/products/app-migrations/webmap-powerbuilder/
https://www.mobilize.net/products/webmap-angular/powerbuilder
https://www.mobilize.net/products/webmap-angular/powerbuilder
https://en.wikipedia.org/wiki/Hungarian_notation
https://en.wikipedia.org/wiki/Hungarian_notation

How Does the Migration Work?
WebMAP is a tool from Mobilize that converts desktop applications into modern web apps by
working directly at the source code level. It automates much of the complex and time-
consuming work involved in migrating applications, significantly reducing the effort required for
large-scale projects.

How It Works:
Point WebMAP at your app’s root folder.
It generates new web-compatible code in a separate folder.
Compile the new code to create your web app.

Why It’s Needed:
Moving from desktop to web exposes platform differences, such as handling printing and
hardware integration, which manual migrations struggle to address efficiently.
Example – Printing:

Desktop apps rely on OS services for advanced printing controls.
Web apps typically generate digital prints (e.g., PDFs) for download and external printing.

WebMAP bridges these gaps, making desktop-to-web transitions faster and more seamless.

9

10

Ok, it's done. Wait, what? Where's the migration step? Actually the migration

process itself is boring. Pick a source path, an
output path, and push "go." There is literally nothing interesting to see,
until it's done, then we see this:

Applications with no connections to printers, scanners, cash registers, or other
hardware are arguably simpler to migrate—at least from that standpoint—than those
that have those kinds of connections. (NB: lots of apps DO have hardware
dependencies, and we've developed a way to connect the web apps to physical
devices, but that's a topic for another blog.)

Our little PowerBuilder demo app doesn't need any hardware, so we can
skip that step in our migration.

Let's migrate.

There are a lot of files there, so let me break it down a bit. Of the three folders, you can ignore
Properties and Stubs (those are support files). The pblwebmap- angular folder is our front-end
(client side) project. We'll come back to that shortly.

Among all the remaining files (at the root) we see a .cs and a Designer.cs file for
each of our PowerBuilder windows: the app (demo) and both the DataWindows
(info and grid) as well as a standard main.cs file.

For various reasons we have split the front-end (client side) code from the back-
end (server side) code in our code tree. At the moment, it's a little easier to work
with Angular, JavaScript, HTML, and CSS using Visual Studio Code (as opposed
to Visual Studio). And, likewise, Visual Studio (not Code) has amazing capabilities
when writing and debugging C# and .NET apps.

Let's start with the client side code. I'm going to open the demo1Site-angular
folder in Code:

11

Let's home in on a couple of things we can find here, starting with the package. json file:

http://https//code.visualstudio.com/
http://https//visualstudio.microsoft.com/
https://code.visualstudio.com/
http://visualstudio.microsoft.com/

This shows us the dependencies our client-side app requires. What's notable here is that
we're using Angular 7, Kendo UI for Angular, and some PowerBuilder components from
Mobilize.

Looking at another key file: angular.json, we see a few more interesting
things:
Note here that the CSS styles that are imported include the Kendo default
theme and some specific CSS files from Mobilize to handle PowerBuilder
requirements.

Progress has three themes for their Angular UI elements that can be
swapped as easily as editing this file here.

Or, you can build your own with their Theme Builder. In any event, having
the UI created in HTML with cascading style sheets gives you a lot of control
over the look and feel of your application.

12

Note: the standard output for GAP Migrations's tools attempts to mirror the look and feel of the
source (legacy) application in order to avoid user confusion or the need for retraining. That doesn't
mean it's the right answer for every application, just the one the majority of our customers request.

https://www.telerik.com/kendo-angular-ui
https://www.telerik.com/kendo-angular-ui
https://www.telerik.com/kendo-angular-ui
https://www.telerik.com/kendo-angular-ui
https://www.telerik.com/kendo-angular-ui
https://www.telerik.com/kendo-angular-ui
https://www.telerik.com/kendo-angular-ui/components/styling/
https://www.telerik.com/kendo-angular-ui/components/styling/
https://www.telerik.com/kendo-angular-ui/components/styling/
https://www.telerik.com/kendo-angular-ui/components/styling/
https://www.telerik.com/kendo-angular-ui/components/styling/
https://www.telerik.com/kendo-angular-ui/components/styling/
https://www.telerik.com/kendo-angular-ui/components/styling/
https://www.telerik.com/kendo-angular-ui/components/styling/
https://www.mobilize.net/blog/webmap-changing-the-kendo-theme
https://www.mobilize.net/blog/webmap-changing-the-kendo-theme
https://www.telerik.com/kendo-angular-ui/components/styling/theme-builder/
https://www.telerik.com/kendo-angular-ui/components/styling/theme-builder/
https://www.telerik.com/kendo-angular-ui/components/styling/theme-builder/

13

Where's the beef?
Let's look at the actual code. The source we want to see is in the

\src\app\components directory:

Notice there is a folder for each of our windows: demo dw_grid, and dw_info.
Remember our PowerBuilder system tree?

Where, you might ask, is the w_main component in our Angular
code? The answer is it went into the bit bucket: we don't need a
containing window when we run the app natively in the browser—
we're creating HTML and that's what the browser knows how to
render.

Ok, back to the app structure. I've expanded all three component
source folders, so you can see each has the same pattern of files: a
template (HTML), a style (CSS file), and a TypeScript file that defines
the component, imports, and exports.

14

Style (CSS)
Let's look at the style sheet file

Template file
The app (which we'll see in a bit) has two DataWindows inside a container
called demo. Looking at the HTML template, we see it contains our two
DataWindows (dw_info1 and dw_grid1) and two command buttons (cb_1 and
cb_2):

There really isn't much to see here.

Again, we're trying to position all the visual elements to resemble as closely as
possible the original runtime UX of the PowerBuilder app. Of course, since this is
CSS you can easily override all the stylings; you can set global styles with the
styles.css file, or add your own JavaScript to do magical dancing elves. Whatever,
it's going to be your app.

Component definition
Finally, here's the component file—note we use TypeScript which gets transpiled
into JavaScript when the app is built for deployment. If you're unfamiliar with
TypeScript, it's just a better JavaScript with stuff like types and classes.

What do we see here? Looking at the import statements, we see we're
getting a lot of stuff from angular/core, plus some specific Mobilize
WebMAP components. All of these pieces are delivered as packages
when you build the front end.

Building the front end
A complete tutorial on how to build an Angular app is beyond the scope of this
blog; the short version is you have to download/update all the dependent
packages, build the app, and export the minified results. In our case this becomes a
folder called wwwroot, which our Visual Studio solution file requires. So without
further ado, as they say, let's look at:

15

https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://www.typescriptlang.org/

16

Server-side code
To be clear: PowerBuilder is not a language per se; it's a 4GL with its own scripting
language. It's familiar looking, certainly readable, but it's not some ANSI standard
programming language. When we migrate PowerBuilder using WebMAP, we can
turn the scripting language—as well as all the runtime functions, object properties,
and events—into either C# using ASP.NET Core or Java using the Spring MVC
pattern.

Today we'll look at converting PowerBuilder to ASP.NET Core. In a
future blog we'll show the Java version.`
Let's open our solution file in Visual Studio:

Let's look at the Solution Explorer—we have our wwwroot folder,
which we talked about above.
Everything the app needs for the front end is in that folder.
We have three C# files: demo.cs, dw_grid.cs, and dw_info.cs.
We also have a main.cs file, which is just an app entry point.

17

Before we dive into the code, let's see what this migrated app looks like running in
Chrome.

Wow, the same app but running as a native web app in a browser!
Again, it may look trivial, but there's several interesting things going on
in this app.

Let me call your attention to the "Clean" command button—when that
is pressed we see a dialog box asking if we want to reset the customer
information ("Yes" "No"). This is basically a Windows message box—
common on all desktop apps. But on the web it gets tricky—which is
why you don't normally see these in a web application.

The problem with modal dialogs on a web app is that they require a
suspension of action until the dialog is dismissed. On Windows this
isn't an issue.

Windows is a single-user, multi-tasking OS, so each application has its
own process space and thread. Suspension of thread execution doesn't
cause problems for any other process. A web server, on the other hand,
is designed to support multiple user sessions simultaneously: that
single execution thread can't be suspended just because one user can't
make a decision.

18

When we migrate PowerBuilder message boxes to the web, we have to manage
that suspension of state in a reasonably elegant fashion, so that it doesn't damage
other session's responsiveness and yet is quickly retrievable when the user
dismisses the modal dialog. I could tell you how we do it, but then I'd have to kill
you.

The beauty of this—from your perspective as a developer—is the
code that you work with. Normally handling a modal dialog, with all
that entails on a web app, would require a boatload of source code.
Instead, through the magic of WebMAP, the code looks like this:

Look familiar? It should, if you've ever written any Windows Forms code at all. Of
course, there's a lot going on behind the scenes to keep the source code that
simple and elegant. We'll get to that in another blog.

As a matter of fact, this one has gone on too long.

In the next step, we get down and dirty with all the code in the new,
migrated web application.

19

Review the Code
Having migrated our PowerBuilder DataWindows from our sample app using
WebMAP, in this final chapter we'll take a deeper dive into the generated code.
Let's begin with an overview of what the generated application looks like:

Notice the option to migrate from PowerBuilder to .NET or
Java. WebMAP can convert your PowerBuilder app—including
DataWindows—to either C# running on ASP.NET Core or Java using the
Spring MVC pattern. In either case, the client-side code is identical,
using Kendo UI for Angular and Angular 7.

In Part 2 we reviewed the front end files, including the component,
template, and styling files. In this post we'll look at the back end in
more detail.

In our original PowerBuilder app, we had two data windows: a grid
presentation (dw_grid) and a form-style presentation (dw_info). Each
DataWindow contained some data-bound controls and a command
button. Each command button had an event handler for a click event.

20

The demo.cs file is a little more interesting: we handle the click events for each of the two command buttons and define our data
table for the DataWindows:

That structure has been preserved in our C#/ASP.NET version as well. Our app consists of four C# files: main.cs, demo.cs,
dw_grid.cs, and dw_info.cs.

The simplest of the four is main.cs, which is just the application entry point. It has just one method:

public static void
Main()

{new demo().Show();

private void cb_2_Click(object sender, System.EventArgs e)
{

this.Close();
}

private void cb_1_Click(object sender, System.EventArgs e)

{
if (Mobilize.Web.MessageBox.Show("Do you want reset customer info?", "Reset", Mobilize.Web.
MessageBoxButtons.YesNo) == Mobilize.Web.DialogResult.Yes)

 {
this.dw1.reset();

}
}

21

public static void bind(dw_info dw_info, dw_grid dw_grid, bool first = true)

{
var dc = new Mobilize.Web.VBUC.ADODataControlHelper();

var dt = new DataTable();

dc.Recordset.Tables.Add(dt);

dt.Columns.Add("Name");

dt.Columns.Add("Id");
dt.Columns.Add("Info1");
dt.Columns.Add("Info2");
dt.Columns.Add("Info3");

dt.Rows.Add(new object[] { "Boe Peep", 123, "Contact: Boe Peep", "Boe Peep's Part Store", "123

Somestreet NE" });

dt.Rows.Add(new object[] { "XYZ Supply", 124, "Contact: John Doe", "XYZ Supply Company", "123
Abcstreet SE" });

if (first) dc.Recordset.MoveFirst(); else dc.Recordset.MoveLast();

dw_info.bind(dc);

dw_grid.bind(dt, dw_info);

 }

Note that just as in the original PowerBuilder app this demo inserts actual data (two rows) instead of connecting to an actual database.
Sheer laziness but it's just as instructive for this purpose.

22

Modal dialogs and other witchery

How is this possible?

Super short answer: it's complicated. Slightly longer answer: we use code weaving and aspect-oriented
programming (AOP), courtesy of the Roslyn compiler. For a more detailed discussion, check out this three-part
series on the complete WebMAP architecture. An easy way to think about this is that we're just letting the compiler
do the heavy lifting.

A Mobilize.WebMessageBox()method handles all the issues that make a modal dialog difficult on a web app:
suspending the session (in effect), caching the user state, maintaining all the other sessions with no penalty, and
timing out the invoking session if necessary. Normally you would have to write a bunch of code to handle this
kind of an event on a web app, which is why you don't see them very often. But virtually every desktop app has
this pattern—saving a file, for example. And so moving those desktop apps to web apps presents this modality
problem at least once and more commonly multiple times.

WebMAP, however, makes it simple.

Notice again the MessageBox.Show method: it looks surprisingly like you would expect to see a "normal" C#
Winforms dialog invocation. Except for the "Mobilize.Web" namespace decoration, it would be exactly like a
standard .NET Framework MessageBox() invocation.

23

The converted DataWindow files
We have a new C# file for each DataWindow object that was in the original PowerBuilder project. Let's look at
dw_info.cs first:

 public partial class dw_info : Mobilize.Web.UserControl
{

public dw_info() { }
public void reset()
{ InitializeComponent();

this.theName.Text = "";
this.theId.Text = "";
this.info1.Text = "";
this.info2.Text = "";
this.info3.Text = "";

} internal void bind(Mobilize.Web.VBUC.ADODataControlHelper dc)
{

this.theName.Text = dc.Recordset.CurrentRow["Name"].ToString();
this.theId.Text = dc.Recordset.CurrentRow["Id"].ToString();
this.info1.Text = dc.Recordset.CurrentRow["Info1"].ToString();
this.info2.Text = dc.Recordset.CurrentRow["Info2"].ToString();
this.info3.Text = dc.Recordset.CurrentRow["Info3"].ToString();

}
}

24

Points of interest:

+

+

+

+

We inherit from Mobilize.Web.UserControl, which is the parent class for all our
UI objects. Notice that dw_info() is a partial class, which means that some of the
implementation is somewhere else; in this case it's in a designer file
(dw_info.Designer.cs) that we will explore in a moment.

Finally, the database model (the bind() method) maps the model to the actual
client-side UI. Remember our HTML template file (see Part 2)?

We have three methods in this class: a constructor, reset() which clears the data, and
a bind() method that binds the UI elements to the database model.

The reset() method is called from the click event handler (see the demo.cs listing
above). It clears the upper DataWindow here:

25

I noted (above) that the dw_info() class defined in dw_info,cs is a
partial class; partial classes in C# have their implementations spread
over more than one file. In our case the dw_info() class is also
implemented in the dw_info().Designer.cs file.

You can see that the user-interface control names match the model in the C# file.
And if we look in the associated CSS file we'll see the styling for those UI elements
as well:

Here's what the HTML for this DataWindow's Angular component looks like:

The designer file

26

Confused yet? Try this:

So turning our attention to the last file we haven't yet looked at
dw_info().Designer.cs), we see the following:

partial class dw_info

 {
[Mobilize.WebMap.Common.Attributes.Intercepted]
///
/// Required designer variable.
///
private
System.ComponentModel.IContainer components { get; set;

}

protected override void Dispose(bool disposing)

{ if (disposing && (components != null))
{ }

components.Dispose();

27

 [Mobilize.WebMap.Common.Attributes.Intercepted]
private Mobilize.Web.TextBox info2 { get; set; }

[Mobilize.WebMap.Common.Attributes.Intercepted]

private Mobilize.Web.TextBox info1 { get; set; }

}

[Mobilize.WebMap.Common.Attributes.Designer]

[Mobilize.WebMap.Common.Attributes.Intercepted]

private Mobilize.Web.Label name_t { get; set; }

[Mobilize.WebMap.Common.Attributes.Intercepted]
private Mobilize.Web.Label id_t { get; set; }

[Mobilize.WebMap.Common.Attributes.Intercepted]

private Mobilize.Web.Label info2_t { get; set; }

[Mobilize.WebMap.Common.Attributes.Intercepted]

private Mobilize.Web.Label info1_t { get; set; }

[Mobilize.WebMap.Common.Attributes.Intercepted]

private Mobilize.Web.Label info3_t { get; set; }

[Mobilize.WebMap.Common.Attributes.Intercepted]

private Mobilize.Web.TextBox theName { get; set; }

[Mobilize.WebMap.Common.Attributes.Intercepted]

private Mobilize.Web.TextBox theId { get; set; }

29

The view is not the model
Let's go back to our running Angular app again:

I don't like the labels of "Info1", "Info2", and "Info3." While they are consistent with the original
PowerBuilder app labels, they don't really tell me what they represent. I'd like the user to see
more representative field names like "Contact", "Company", and "Address." And I'd like all the
labels to be in a bold font, to make the upper DataWindow a little easier to read.

Every experienced web developer who is reading along now just snickered and
thought something like, "Well, that's trivial in a web application. Just edit the
HTML and CSS."

Bingo.

So bear with me, because I know that many of our Dear Readers aren't
experienced web developers. So they might enjoy seeing how simple this is.

30

With the app running in Chrome, right click the "Info1:" label and select Inspect. This opens
Chrome developer tools with the focus on that HTML element:

Unlike the original PowerBuilder app, or many legacy desktop apps written in various languages
like Visual Basic or even C/Win32, the view/presentation/user interface is not part and parcel of
the actual business logic.

Instead, the view in this app is handled exclusively by the HTML and CSS, with
Kendo UI and Angular behind the scenes doing the heavy lifting.
The model—the internal business logic representation of all the visual elements—
is in the ASP.NET Core C# code running on the web server. The model doesn't
need to know anything about the view and the view doesn't need to know
anything about the model: we have separation of concerns via the MVC (model
view controller) pattern.

Ok, enough theory. Let's fix the UI. Fortunately this is not only easy, it's something
someone untrained in C# or advanced programming can easily do. Here's how I
like to do this.

Modifying the UI

31

Changes this:

Zooming in. Changing this:

On the right we see all the HTML and the blue highlighted code tells us that the label is a
member of the class "k-form-field info1_t" (k-form-field being from the Kendo UI for Angular
component library we are using), that it is from the wmcontrols Angular library from WebMAP,
and that the value is "Info1:".

Let's change the label to "Contact":

32

So that's pretty easy—changing the HTML in the Chrome developer tools lets us
see exactly how those changes will change the app running in the browser.

Note this doesn't change our source code—if we refresh the
browser our changes will be lost.
This is a way to get things how we want them, or play around with the
presentation. Once we know what the changes are, we have to make
them in the original HTML and CSS files and rebuild the client-side
code.
Let's keep going. Notice that our label now bumps into the text
box. Can we change the position? Remember the styling (including
positioning) comes from our CSS file:

33

Notice how the CSS matches what's in the view above. We can change it here to
250 pixels and see if that fixes our problem:

The controlling factor for our problem is the "left: 277px;" line. Remember that in
order to have the migrated Angular app look as much as possible like the original
PowerBuilder app we have to position all the elements precisely on the browser
window—in this case these values (left and top) are offsets from the upper left
corner of the browser's area for rendering HTML. If we didn't use the "absolute"
property for the position element, these labels and text boxes could be scattered all
over the browser space.

Since our label .info1_t runs into the text box (info1), we need to shift its
position left. Let's try a value of 250 pixels. How do we do that? It's not
in the HTML, but Chrome developer tools also shows us all the styles, in
their cascading order, like this:

34

We can change anything we want if it's CSS: let's make the label bold. Notice how
Chrome suggests things like Visual Studio's "Intellisense":

Clearly, we'd want to adjust everything so it aligns correctly, maybe
make the label font a little larger and prominent, and so on.
And we don't have to make notes about what we did: it's easy in
Chrome to associate the original CSS and HTML source files—in our
Angular folder—with the running app so all our changes are saved back
into our project.
All we have to do then is rebuild the wwwroot folder (using "ng build")
and the app is automatically updated. We don't even have to recompile
the ASP.NET Core solution in Visual Studio.

Migrate Powerbuilder to the Web

Wrapping up
When I talk to developers about PowerBuilder, the first thing I usually hear is, "Wow,
I can't believe how much PowerBuilder is still out there." If they have PowerBuilder,
the second thing I usually hear is, "It's hard/ difficult/impossible to find developers
anymore."

The world has changed. PowerBuilder belongs to a different, older
world. Today it's all about cloud-native apps. If you've still got
PowerBuilder, I hope this series of posts gives you some useful
information about options to get rid of it.
And have something far, far better.

35

https://www.mobilize.net/products/webmap-angular/powerbuilder

GAP Migrations is the world’s authority on automated software modernization.

Call today!
+1-425-609-8458 www.mobilize.net info@wearegap.com

Get off

https://www.mobilize.net/
https://www.mobilize.net/

